Начальная остойчивость судна. Поперечная остойчивость Поперечное горизонтальное перемещение груза


Основной характеристикой остойчивости является восстанавливающий момент ,который должен быть достаточным для того, чтобы судно противостояло статическому или динамическому (внезапному) действию кренящих и дифферентующих моментов, возникающих от смещения грузов, под воздействием ветра,волнения и по другим причинам.

Кренящий (дифферентующий) и восстанавливающий моменты действуют в противоположных направлениях и при равновесном положении судна равны.

Различают поперечную остойчивость , соответствующую наклонению судна в поперечной плоскости (крен судна), и продольную остойчивость (дифферент судна).

Продольная остойчивость морских судов заведомо обеспечена и ее нарушение практически невозможно, в то время как размещение и перемещение грузов приводит к изменениям поперечной остойчивости.

При наклонении судна его центр величины (ЦВ) будет перемещаться по некоторой кривой, называемой траекторией ЦВ. При малом наклонении судна (не более 12°) допускают, что траектория ЦВ совпадает с плоской кривой, которую можно считать дугой радиуса r с центром в точке m.

Радиус r называют поперечным метацентрическим радиусом судна , а его центр m - начальным метацентром судна .

Метацентр - центр кривизны траектории, по которой перемещается центр величины С в процессе наклонения судна. Если наклонение происходит в поперечной плоскости (крен), метацентр называют поперечным, или малым, при наклонении в продольной плоскости (дифферент) - продольным, или большим.

Соответственно различают поперечный (малый) r и продольный (большой) R метацентрические радиусы, представляющие радиусы кривизны траектории С при крене и дифференте.

Расстояние между начальным метацентром т и центром тяжести судна G называют начальной метацентрической высотой (или просто метацентрической высотой ) и обозначают буквой h. Начальная метацентрическая высота является измерителем остойчивости судна.

h = zc + r - zg; h = zm ~ zc; h = r - a,

где а - возвышение центра тяжести (ЦТ) над ЦВ.

Метацентрическая высота (м.в.) - расстояние между метацентром и центром тяжести судна. М.в. является мерой начальной остойчивости судна, определяющей восстанавливающие моменты при малых углах крена или дифферента.
При возрастании м.в. остойчивость судна повышается. Для положительной остойчивости суд- на необходимо, чтобы метацентр находился выше ЦТ судна. Если м.в. отрицательна, т.е. метацентр располагается ниже ЦТ судна, силы, действующие на судно, образуют не восстанавливающий, а кренящий момент, и судно плавает с начальным креном (отрицательная остойчивость), что не допускается.

OG – возвышение центра тяжести над килем; OM – возвышение метацентра над килем;

GM - метацентрическая высота; CM – метацентрический радиус;

m – метацентр; G – центр тяжести; С – центр величины

Возможны три случая расположения метацентра m относительно центра тяжести судна G:

метацентр m расположен выше ЦТ судна G (h > 0). При малом наклонении силы тяжести и силы плавучести создают пару сил, момент которой стремится вернуть судно в первоначальное равновесное положение;

ЦТ судна G расположен выше метацентра m (h < 0). В этом случае момент пары сил веса и плавучести будет стремиться увеличить крен судна, что ведет к его опрокидыванию;

ЦТ судна G и метацентр m совпадают (h = 0). Судно будет вести себя неустойчиво, так как отсутствует плечо пары сил.

Физический смысл метацентра заключается в том, что эта точка служит пределом, до которого можно поднимать центр тяжести судна, не лишая судно положительной начальной остойчивости.

Остойчивостью называется способность судна, наклоненного действием внешних сил из положения равновесия, возвращаться к состоянию равновесия после прекращения действия этих сил.

Наклонения судна могут происходить под действием таких внешних сил, как перемещение, прием или расходование грузов, давление ветра, действие волн, натяжение буксирного троса и пр.

Остойчивость, которую судно имеет при продольных наклонениях, измеряемых углами дифферента, называют продольной. Она, как правило, довольно велика, поэтому опасности опрокидывания судна через нос или корму никогда не возникает. Но изучение ее необходимо для определения дифферента судна при воздействии внешних сил. Остойчивость, которую судно имеет при поперечных наклонениях, измеряемых углами крена 6, называют поперечной.

Поперечная остойчивость является важнейшей характеристикой судна, определяющей его мореходные качества и степень безопасности плавания. При изучении поперечной остойчивости различают начальную остойчивость (при малых наклонениях судна) и остойчивость на больших углах крена. Начальная остойчивость. При крене судна на малый угол под действием какой-либо из названных внешних сил происходит перемещение ЦВ за счет перемещения подводного объема (рис. 149). Величина образующегося при этом восстанавливающего момента зависит от величины плеча l = GK между силами

веса и поддержания наклоненного судна. Как видно из рисунка, восстанавливающий момент Мв = Dl = Dh sin θ, где h - возвышение точки М над ЦТ судна G , называемое поперечной метацентрической высотой судна . Точка М носит название поперечного метацентра судна.

Рис. 149. Действие сил при крене судна

Метацентрическая высота является важнейшей характеристики остойчивости. Она определяется выражением

h = z c + r - z g ,

где z c - возвышение ЦВ над ОЛ; r - поперечный метацентрический радиус, т. е. возвышение метацентра над ЦВ; z g - возвышение ЦТ судна над ОЛ.

Значение z g определяют при расчете нагрузки масс. Приближенно можно

принять (для судна с полным грузом) z g = (0,654-0,68) Н , где Н - высота борта на миделе.

Значение z c и r определяют по теоретическому чертежу или (для прикидочных расчетов) по приближенным формулам, например:

где В - ширина судна, м; Т - осадка, м; α - коэффициент полноты ватерлинии; δ - коэффициент общей полноты; К - коэффициент, зависящий от формы ватерлинии и ее полноты и изменяющийся в пределах 0,086 - 0,089.

Из приведенных формул видно, что поперечная остойчивость судна повышается с увеличением В и α; с уменьшением Т и δ; с возвышением ЦВ z c ; с

понижением ЦТ z g . Таким образом, более остойчивы широкие суда, а также суда с низким расположением ЦТ. При понижении ЦТ, т. е. при расположении более тяжелых грузов - механизмов и оборудования - как можно ниже и при

облегчении высокорасположенных конструкций (надстроек, мачт, труб, которые с этой целью иногда изготовляют из легких сплавов) метацентрическая высота увеличивается. И наоборот, при приеме тяжелых грузов на палубу, обледенении надводной части корпуса, надстроек, мачт и т. п., во время плавания судна в зимних условиях остойчивость судна уменьшается.

Опыт кренования . На построенном судне начальную метацентрическую высоту определяют (используя метацентрическую формулу остойчивости) опытным путем - кренованием судна, которое производят на угол 1,5-2 переносом с борта на борт заранее взвешенного груза. Схема опыта кренования показана на рис. 150.

Рис. 150. Схема опыта кренования.

1 - рейка с делениями; 2 - грузик и крылатка; 3 - ванна с водой или маслом; 4 - нить веска; 5 - переносной крепящий груз

Кренящий момент М кр вызывается переносом груза Р на расстояние у : М кр = Ру . По метацентрической формуле остойчивости h = М KP /D θ (sin θ заменен величиной θ ввиду малости угла крена θ). Но θ = d/l , поэтому h = Pyl/Dd.

Значения всех величин, входящих в эту формулу, определяют в процессе опыта кренования. Водоизмещение находят расчетным путем по осадкам, замеренным по маркам углубления.

На небольших судах перенос груза (чугунных чушек, мешков с песком и т. п.) иногда заменяют перебежками людей общей массой около 0,2-0,5 % водоизмещения порожнего судна. Угол крена θ замеряют весками, опущенными в масляные ванны. В последнее время вески заменяют специальными приборами, позволяющими точно замерять угол крена во время опыта кренования (с учетом происходящего при переносе груза раскачивания судна), - так называемыми инклинографами.

По найденной с помощью опыта кренования начальной метацентрической высоте рассчитывают по приведенным выше формулам положение ЦТ построенного судна.

Ниже приведены примерные значения поперечной метацентрической высоты для разных типов судов с полным грузом:

Большие пассажирские суда …………………………… 0,3-1,5

Средние и малые пассажирские суда. . . ……………… 0,6-0,8

Большие сухогрузные суда …………………………….. 0,7-1,0

Средние ………………………………………………….. 0,5-0,8

Большие наливные суда ………………………………… 2,0-4,0

Средние …………………………………………………... 0,7-1,6

Речные пассажирские суда …………………………….... 3,0-5,0

Баржи ……………………………………………………… 2,0-10,0

Ледоколы ……… ………………………………………… 1,5-4,0

Буксиры …………………………………………………… 0,5-0,8

Рыбопромысловые суда …………………………………. 0,7-1,0

Остойчивость на больших углах крена . По мере увеличения угла крена судна восстанавливающий момент сначала растет (рис. 151, а-в), затем уменьшается, становится равным нулю и уже не препятствует, а, наоборот, способствует дальнейшему наклонению судна (рис. 151, г).

Рис. 151. Действие сил при накренении судна на большие углы

Так как водоизмещение D для данного состояния нагрузки остается постоянным, то восстанавливающий момент М в изменяется пропорционально изменению плеча l поперечной остойчивости. Это изменение плеча остойчивости в зависимости от угла крена 8 можно рассчитывать и изображать графически, в виде диаграммы статической остойчивости (рис. 152), которую строят для наиболее характерных и опасных относительно остойчивости случаев нагрузки судна.

Диаграмма статической остойчивости является важным документом, характеризующим остойчивость судна. С ее помощью можно, зная величину действующего на судно кренящего момента, например, от давления ветра, определяемого по шкале Бофорта (табл. 8), или от переноса на борт груза, от принятых несимметрично ДП водяного балласта или запасов топлива и т. п., - найти величину образующегося угла крена в том случае, если этот угол велик (более 10°). Малый угол крена вычисляют без построения диаграммы по приведенной выше метацентрической формуле.

Рис. 152. Диаграмма статической остойчивости

По диаграмме статической остойчивости можно определить начальную метацентрическую высоту судна, которая равна отрезку между горизонтальной осью и точкой пересечения касательной к кривой плеч остойчивости в начале координат с вертикалью, проведенной при угле крена, равном одному радиану (57,3°). Естественно, чем круче в начале координат кривая, тем больше начальная метацентрическая высота.

Особенно полезна диаграмма статической остойчивости тогда, когда надо узнать угол крена судна от действия внезапно приложенной силы - при так называемом динамическом действии силы.

Если на судно действует какая-либо статически, т. е. плавно, без рывков, приложенная сила, то образуемый ею кренящий момент создает угол крена, который определяют по диаграмме статической остойчивости (построенной в форме кривой изменения восстанавливающих моментов D (от угла крена) в точке пересечения с кривой горизонтальной прямой, проведенной параллельно горизонтальной оси на расстоянии, равном значению кренящего момента (рис. 153, а). В этой точке (точка А ) кренящий момент от действия статической


Характеристика ветра и морского волнения


силы равен восстанавливающему моменту, возникающему при накренении судна и стремящемуся возвратить накрененное судно в исходное, прямое, положение. Угол крена, при котором кренящий и восстанавливающий моменты равны, и является искомым углом крена от статически приложенной силы.

Если же кренящая сила действует на судно динамически, т. е. внезапно (порыв ветра, рывок буксирного троса и т. п.), то вызываемый ею угол крена определяют по диаграмме статической остойчивости иным образом.


Рис. 153. Определение угла крена от действия статически (а ) и динамически (б ) приложенной силы

Горизонтальную линию кренящего момента, например от действия ветра при шквале, продолжают вправо от точки А (рис. 153, б) до тех пор, пока отсекаемая ею площадь ABC внутри диаграммы не станет равной площади AOD вне ее; при этом угол крена (точка Е) соответствующий положению прямой ВС , является искомым углом крена от действия динамически приложенной силы. Физически это соответствует углу крена, при котором работа кренящего момента (графически изображаемая площадью прямоугольника ODCE ) оказывается равной работе восстанавливающего момента (площадь фигуры ОБЕ ).

Если же площадь, ограниченная кривой восстанавливающих моментов, окажется недостаточной, чтобы сравняться с площадью фигуры, ограниченной кренящим моментом вне ее, то судно опрокинется. Поэтому одной из главных характеристик диаграммы, свидетельствующих об остойчивости судна, является ее площадь, ограничиваемая кривой и горизонтальной осью. На рис. 154 показаны кривые плеч статической остойчивости двух судов: с большой начальной остойчивостью, но с малой площадью диаграммы (1 ) и с меньшей начальной метацентрической высотой, но с большей площадью диаграммы (2). Последнее судно способно выдержать более сильный ветер, оно более остойчиво. Обычно площадь диаграммы больше у судна с высоким надводным бортом и меньше - с низким.

Рис. 154. Кривые статической остойчивости судна с высоким (1) и с низким (2) надводным бортом

Остойчивость морских судов должна отвечать Нормам остойчивости Регистра СССР, предусматривающим в качестве основного критерия (называемого «критерием погоды») условие: опрокидывающий момент М опр , т. е. минимальный динамически приложенный момент, который при одновременном воздействии бортовой качки и наихудшей загрузке вызывает опрокидывание судна, не должен быть меньше динамически приложенного к судну кренящего момента М кр от давления ветра, т. е. К = М опр /М кр ≥ l,00.

При этом значение опрокидывающего момента находят по диаграмме статической остойчивости по особой схеме, а сопоставляемое с ним значение (в кН∙м) кренящего момента (рис. 155) по формуле М кр = 0,001P в S п z n , где Р в -давление ветра, МПа или кгс/м 2 (определяется по шкале Бофорта в столбце «при шквале» или по таблице Регистра СССР); S n - площадь парусности (площадь боковой проекции надводной части судна), м 2 ; z n - возвышение центра парусности над ватерлинией, м.

При изучении диаграммы статической остойчивости представляет интерес угол, при котором кривая пересекает горизонтальную ось - так называемый угол заката. По Правилам Регистра у морских судов этот угол не должен быть меньше 60°. Эти же Правила требуют, чтобы максимальные значения восстанавливающих моментов на диаграмме достигались при угле крена не менее 30°, а максимальное плечо остойчивости было бы не менее 0,25 м у судов длиной до 80 м и не менее 0,20 м - у судов длиной более 105 м.


Рис. 155. К определению кренящего момента от действия силы ветра

при шквале (площадь парусности заштрихована)

Влияние жидких грузов на остойчивость . Имеющиеся в цистернах жидкие грузы при неполном заполнении цистерн в случае наклонения судна перемещаются в сторону наклонения. Из-за этого в ту же сторону перемещается ЦТ судна (из точки G 0 в точку G) , что приводит к уменьшению плеча восстанавливающего момента. На рис. 156 показано, как плечо остойчивости l 0 при учете смещения жидкого груза уменьшается до l. При этом, чем шире цистерна или отсек, имеющие свободную поверхность жидкости, тем значительнее, перемещение ЦТ и, следовательно, больше уменьшение поперечной остойчивости. Поэтому для уменьшения влияния жидких грузов стремятся уменьшить ширину цистерны, а во время эксплуатации - ограничить число цистерн, в которых образуются свободные уровни, т. е. расходовать запасы не сразу из нескольких цистерн, а поочередно.

Влияние сыпучих грузов на остойчивость. К сыпучим грузам относят зерно всех видов, уголь, цемент, руду, рудные концентраты и др.

Свободная поверхность жидких грузов всегда остается горизонтальной.

В отличие от них сыпучие грузы характеризуются углом естественного откоса, т. е. наибольшим углом между поверхностью груза и горизонтальной плоскостью, при котором груз еще находится в покое и при превышении которого начинается пересыпание. У большинства сыпучих грузов этот угол находится в пределах 25-35°.

Сыпучие грузы, погруженные на судно, характеризуются также пористостью, или скважистостью, т. е. соотношением объемов, занятых непосредственно частицами груза, и пустот между ними. Эта характеристика, зависящая как от свойств самого груза, так и от способа его погрузки в трюм, определяет степень его усадки (уплотнения) во время транспортировки.

Рис. 156. К определению влияния свободной поверхности жидкого груза

на остойчивость

При перевозке сыпучих грузов (особенно зерна) в результате образования пустот по мере их усадки от тряски и вибрации корпуса во время рейса, при резких или больших наклонениях судна под действием шквала (превышающих угол естественного откоса) они пересыпаются на один борт и уже не возвращаются полностью к исходному положению после выпрямления судна.

Количество пересыпавшегося таким образом груза (зерна) постепенно увеличивается и вызывает крен, который может привести к опрокидыванию судна. Во избежание этого принимают специальные меры - укладывают поверх насыпанного в трюм зерна мешки с зерном (мешкование груза) или устанавливают в трюмах дополнительные временные продольные переборки - шифтинг-бордсы (см. рис. 154). При невыполнении этих мероприятий происходят серьезные аварии и даже гибель судов. Статистика показывает, что более половины судов, погибших из-за опрокидывания, перевозили сыпучие грузы.

Особая опасность возникает при перевозке рудных концентратов, которые при изменении их влажности во время рейса, на пример при оттаивании или отпотевании, приобретают высокую подвижность и легко смещаются к борту. Это еще мало изученное свойство рудных концентратов стало причиной ряда тяжелых аварий судов.

Судна его продольная остойчивость значительно выше поперечной, поэтому для безопасности плавания наиболее важно обеспечить надлежащую поперечную остойчивость.

  • В зависимости от величины наклонения различают остойчивость на малых углах наклонения (начальную остойчивость ) и остойчивость на больших углах наклонения.
  • В зависимости от характера действующих сил различают статическую и динамическую остойчивость.
Статическая остойчивость - рассматривается при действии статических сил, то есть приложенная сила не изменяется по величине. Динамическая остойчивость - рассматривается при действии изменяющихся (т.е. динамических) сил, например ветра, волнения моря, подвижки груза и т.п.

Начальная поперечная остойчивость

Начальная поперечная остойчивость. Система сил, действующих на судно

При крене остойчивость рассматривается как начальная при углах до 10-15°. В этих пределах восстанавливающее усилие пропорционально углу крена и может быть определено при помощи простых линейных зависимостей.

При этом делается допущение, что отклонения от положения равновесия вызываются внешними силами, которые не изменяют ни вес судна, ни положение его центра тяжести (ЦТ). Тогда погруженный объем не изменяется но величине, но изменяется по форме. Равнообъемным наклонениям соответствуют равнообъемные ватерлинии , отсекающие равные по величине погруженные объемы корпуса. Линия пересечения плоскостей ватерлиний называется осью наклонения, которая при равнообъемных наклонениях проходит через центр тяжести площади ватерлинии. При поперечных наклонениях она лежит в диаметральной плоскости.

Свободные поверхности

Все рассмотренные выше случаи предполагают, что центр тяжести судна неподвижен, то есть нет грузов, которые перемещаются при наклонении. Но когда такие грузы есть, их влияние на остойчивость значительно больше остальных.

Типичным случаем являются жидкие грузы (топливо, масло, балластная и котельная вода) в цистернах, заполненных частично, то есть имеющих свободные поверхности . Такие грузы способны переливаться при наклонениях. Если жидкий груз заполняет цистерну полностью, он эквивалентен твердому закрепленному грузу.

Влияние свободной поверхности на остойчивость

Если жидкость заполняет цистерну не полностью, т.е. имеет свободную поверхность, занимающую всегда горизонтальное положение, то при наклонении судна на угол θ жидкость переливается в сторону наклонения. Свободная поверхность примет такой же угол относительно КВЛ.

Уровни жидкого груза отсекают равные по величине объёмы цистерн, т.е. они подобны равнообъёмным ватерлиниям. Поэтому момент, вызываемый переливанием жидкого груза при крене δm θ , можно представить аналогично моменту остойчивости формы m ф, только δm θ противоположно m ф по знаку:

δm θ = - γ ж i x θ,

где i x - момент инерции площади свободной поверхности жидкого груза относительно продольной оси, проходящей через центр тяжести этой площади, γ ж - удельный вес жидкого груза

Тогда восстанавливающий момент при наличии жидкого груза со свободной поверхностью:

m θ1 = m θ + δm θ = Phθ − γ ж i x θ = P(h − γ ж i x /γV)θ = Ph 1 θ,

где h - поперечная метацентрическая высота в отсутствие переливания, h 1 = h − γ ж i x /γV - фактическая поперечная метацентрическая высота.

Влияние переливающегося груза дает поправку к поперечной метацентрической высоте δ h = - γ ж i x /γV

Плотности воды и жидкого груза относительно стабильны, то есть основное влияние на поправку оказывает форма свободной поверхности, точнее ее момент инерции. А значит, на поперечную остойчивость в основном влияет ширина, а на продольную длина свободной поверхности.

Физический смысл отрицательного значения поправки в том, что наличие свободных поверхностей всегда уменьшает остойчивость. Поэтому принимаются организационные и конструктивные меры для их уменьшения:

    энергиях , точнее в виде работы сил и моментов, а не в самих усилиях. При этом используется теорема кинетической энергии , согласно которой приращение кинетической энергии наклонения судна равно работе действующих на него сил.

    Когда к судну прикладывается кренящий момент m кр , постоянный по величине, оно получает положительное ускорение, с которым начинает крениться. По мере наклонения возрастает восстанавливающий момент, но вначале, до угла θ cт , при котором m кр = m θ , он будет меньше кренящего. По достижении угла статического равновесия θ cт , кинетическая энергия вращательного движения будет максимальной. Поэтому судно не останется в положении равновесия, а за счет кинетической энергии будет крениться дальше, но замедленно, поскольку восстанавливающий момент больше кренящего. Накопленная ранее кинетическая энергия погашается избыточной работой восстанавливающего момента. Как только величина этой работы будет достаточной для полного погашения кинетической энергии, угловая скорость станет равной нулю и судно перестанет крениться.

    Наибольший угол наклонения, которое получает судно от динамического момента, называется динамическим углом крена θ дин . В отличие от него угол крена, с которым судно будет плавать под действием того же момента (по условию m кр = m θ ), называется статическим углом крена θ ст .

    Если обратиться к диаграмме статической остойчивости, работа выражается площадью под кривой восстанавливающего момента m в . Соответственно, динамический угол крена θ дин можно определить из равенства площадей OAB и BCD , соответствующих избыточной работе восстанавливающего момента. Аналитически та же работа вычисляется как:

    ,

    на интервале от 0 до θ дин .

    Достигнув динамического угла крена θ дин , судно не приходит в равновесие, а под действием избыточного восстанавливающего момента начинает ускоренно спрямляться. При отсутствии сопротивления воды судно вошло бы в незатухающие колебания около положения равновесия при крене θ ст Морской словарь - Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

    Судно, корпус которого при движении поднимается над водой под действием подъёмной силы, создаваемой погруженными в воду крыльями. Патент на С. на п. к. выдан в России в 1891, однако применяться эти суда стали со 2 й половины 20 в.… … Большая советская энциклопедия

    Машина повышенной проходимости, способная двигаться как по суше, так и по воде. Автомобиль амфибия имеет увеличенный объём герметизированного кузова, который иногда для лучшей плавучести дополняется навесными поплавками. Передвижение по воде… … Энциклопедия техники

    - (малайск.) тип парусного судна, поперечная остойчивость к рого обеспечивается аутригером поплавком, прикрепл. к осн. корпусу поперечными балками. Судно подобно парусному катамарану. В древности П. служили средством сообщения на о вах Тихого… … Большой энциклопедический политехнический словарь

    амфибия Энциклопедия «Авиация»

    амфибия - (от греч. amphíbios — ведущий двойной образ жизни) — гидросамолёт, оборудованный сухопутным шасси и способный базироваться как на водной поверхности, так и на сухопутных аэродромах. Наиболее распространены А. лодки. Взлёт с воды,… … Энциклопедия «Авиация»

Остойчивость судна при малых углах наклонения (θ менее 120) называется начальной, в этом случае восстанавливающий момент линейно зависит от угла крена.

Рассмотрим равнообъемные наклонения судна в поперечной плоскости.

При этом будем полагать, что:

угол наклонения θ является небольшим (до 12°);

участок кривой СС1 траектории ЦВ является дугой круга, лежащей в плоскости наклонения;

линия действия силы плавучести в наклонном положении судна проходит через начальный метацентр m.

При таких допущениях полный момент пары сил (сил веса и плавучести) действует в плоскости наклонения на плече GK, которое называется плечом статической остойчивости, а сам момент - восстанавливающим моментом и обозначается Мв.

Мв = Рhθ.

Эта формула носит название метацентрической формулы поперечной остойчивости.

При поперечных наклонениях судна на угол, превышающий 12°, пользоваться вышеприведенным выражением не представляется возможным, так как центр тяжести площади наклонной ватерлинии смещается с диаметральной плоскости, а центр величины перемещается не по дуге окружности, а по кривой переменной кривизны, т. е. метацентрический радиус изменяет свою величину.

Для решения вопросов остойчивости на больших углах крена используют диаграмму статической остойчивости (ДСО) , представляющую собой график,выражающий зависимость плеч статической остойчивости от угла крена.

Диаграмма статической остойчивости строится при помощи пантокарен – графики зависимости плеч остойчивости формы lф от объемного водоизмещения судна и угла крена. Пантокарены конкретного судна строятся в конструкторском бюро для углов крена от 0 до 900 для водоизмещений от порожнего судна до водоизмещения судна в полном грузу (находятся на судне – таблицы кривых элементов теоретического чертежа).

Рис - а - пантокарены; б - графики для определения плеч статической остойчивости l

Для построения ДСО необходимо:

на оси абсцисс пантокарен отложить точку, соответствующую объемному водоизмещению судна на момент окончания погрузки;

из полученной точки восстановить перпендикуляр и снять с кривых значения lф для углов крена 10, 200 и т. д.;

вычислить плечи статической остойчивости по формуле:

l = lф – a*sinθ = lф – (Zg – Zc) *sinθ,

где a = Zg – Zc (при этом аппликату ЦТ судна Zg находят из расчета нагрузки, отвечающую данному водоизмещению – заполняют специальную таблицу, а аппликату ЦВ Zc - из таблиц кривых элементов теоретического чертежа);

построить кривую lф и синусоиду a*sinθ, разности ординат которых являются плечами статической остойчивости l.

Для построения диаграммы статической остойчивости на оси абсцисс откладывают углы крена θ в градусах, а по оси ординат - плечи статической остойчивости в метрах. Диаграмму строят для определенного водоизмещения.

На рис. показаны определенные состояния судна при различных наклонениях:

положение I (θ = 00) соответствует положению статического равновесия (l= 0);

положение II (θ = 200) − появилось плечо статической остойчивости (1 = 0,2м);

положение III (θ = 370) − плечо статической остойчивости достигло максимума (I = 0,35 м);

положение IV (θ = 600) − плечо статической остойчивости уменьшается (I = 0,22 м);

положение V (θ = 830) − плечо статической остойчивости равно нулю. Судно находится в положении статического неустойчивого равновесия, так как даже небольшое увеличение крена приведет к опрокидыванию судна;

положение VI (θ = 1000) − плечо статической остойчивости становится отрицательным и судно опрокидывается.

Начиная с положений, больших, чем положение III, судно будет не способно самостоятельно вернуться в положение равновесия без приложения к нему внешнего усилия.

Таким образом, судно остойчиво в пределах угла крена от нуля до 83°. Точка пересечения кривой с осью абсцисс, соответствующая углу опрокидывания судна (θ = 830) называется точкой заката диаграммы, а данный угол - углом заката диаграммы.

Максимальный кренящий момент Мкр max , который может выдержать судно не опрокидываясь, соответствует максимальному плечу статической остойчивости.

Пользуясь диаграммой статической остойчивости, можно определить угол крена по известному кренящему моменту М1, возникшему под действием ветра,волнения, смещения груза и т.д. Для его определения проводят горизонтальную линию, выходящую из точки М1, до пересечения с кривой диаграммы, и из полученной точки опускают перпендикуляр на ось абсцисс (θ = 260). Таким же образом решается и обратная задача.

По диаграмме статической остойчивости можно определить величину начальной метацентрической высоты, для нахождения которой необходимо:

из точки на оси абсцисс, соответствующей углу крена 57.3° (один радиан),восстановить перпендикуляр;

из начала координат провести касательную к начальному участку кривой;

измерить отрезок перпендикуляра, заключенный между осью абсцисс и касательной, который в масштабе плеч остойчивости равен метацентрической высоте судна.

Взаимным расположением груза на судне судоводитель всегда может найти наиболее выгодное значение метацентрической высоты, при которой судно будет достаточно остойчивым и меньше подвергаться качке.

Кренящим моментом называется произведение веса груза, перемещаемого поперек судна, на плечо, равное расстоянию перемещения. Если человек весом 75 кг, сидящий на банке, переместится поперек судна на 0,5 м, то кренящий момент будет равен 75*0,5 = 37,5 кг/м.

Рис 91. Диаграмма статической остойчивости

Для изменения момента, накреняющего судно па 10°, надо загрузить судно до полного водоизмещения совершенно симметрично относительно диаметральной плоскости.

Загрузку судна следует проверить по осадкам, измеряемым с обоих бортов. Креномер устанавливается строго перпендикулярно диаметральной плоскости таким образом, чтобы он показал 0°.

После этого надо перемещать грузы (например, людей) на заранее размеченные расстояния до тех пор, пока креномер не покажет 10°. Опыт для проверки следует произвести так: накренить судно на один, а затем на другой борт.

Зная крепящие моменты накреняющего судно на различные (до наибольшего возможного) углы, можно построить диаграмму статической остойчивости (рис. 91), что оценит остойчивость судна.

Остойчивость можно увеличивать за счет увеличения ширины судна, понижения ЦТ, устройства кормовых булей.

Если центр тяжести судна расположен ниже центра величины, то судно считается весьма остойчивым, так как сила поддержания при крене не изменяется по величине и направлению, но точка ее приложения смещается в сторону наклона судна (рис. 92, а).

Поэтому при крене образуется пара сил с положительным восстанавливающим моментом, стремящимся вернуть судно в нормальное вертикальное положение па прямой киль. Легко убедиться, что h>0, при этом метацентрическая высота равна 0. Это типично для яхт с тяжелым килем и нетипично для более крупных судов с обычным устройством корпуса.

Если центр тяжести расположен выше центра величины, то возможны три случая остойчивости, которые судоводитель должен хорошо знать.

Первый случай остойчивости.

Метацентрическая высота h>0. Если центр тяжести расположен выше центра величины, то при наклонном положении судна линия действия силы поддержания пересекает диаметральную плоскость выше центра тяжести (рис. 92, б).



Рис. 92.
Случай остойчивого судна

В этом случае также образуется пара сил с положительным восстанавливающим моментом. Это типично для большинства судов обычной формы. Остойчивость в этом случае зависит от корпуса и положения центра тяжести по высоте.

При крене кренящийся борт входит в воду и создает дополнительную плавучесть, стремящуюся выровнять судно. Однако при крене судна с жидкими и сыпучими грузами, способными перемещаться в сторону крена, центр тяжести также сместится в сторону крена. Если центр тяжести при крене переместится за отвесную линию, соединяющую центр величины с метацентром, то судно опрокинется.

Второй случай неостойчивого судка при безразличном равновесии.

Метацентрическая высота h = 0. Если центр тяжести лежит выше центра величины, то при крене линия действия силы поддержания проходит через центр тяжести MG = 0 (рис. 93).

В данном случае центр величины всегда располагается на одной вертикали с центром тяжести, поэтому восстанавливающаяся пара сил отсутствует. Без воздействия внешних сил судно не может вернуться в прямое положение.

В данном случае особо опасно и совершенно недопустимо перевозить на судне жидкие и сыпучие грузы: при самой незначительной качке судно перевернется. Это свойственно шлюпкам с круглым шпангоутом.

Третий случай неостойчивого судна при неустойчивом равновесии.

Метацентрическая высота h<0. Центр тяжести расположен выше центра величины, а в наклонном положении судна линия действия силы поддержания пересекает след диаметральной плоскости ниже центра тяжести (рис. 94).

Выбор редакции
Сегодня по просьбе одного из моих читателей мы отправимся в очень красивое место – на остров Мадейра . У таких необыкновенно красивых...

«Город, дающий надежду и спасение» - именно так называют курорт, который уже более 100 лет действительно возвращает больным людям...

Небольшой уютный городок Цуг на берегу озера с одноименным названием, среди парков и фруктовых садов, находится в 30 минутах от Цюриха....

Удивительную красоту можно увидеть в американском штате Калифорния, а именно в городе Форт-Брагг. Этот необыкновенный пляж из стекла...
Буддийская ступа на о. Огой– святые источники Одна из самых популярных экскурсий по Малому морю Экскурсия начинается от причала...
Парк Сокольники и история района Сокольники. «Сокольники» не просто наименование части территории Москвы, обширного района на...
Самый Австралия самый небольшой материк по площади, самый низкий по высоте. Единственный материк, где нет действующих вулканов и...
Однажды в Туле… По пустынной улице ночного города бежали три человека. Окна в домах еще не горели, люди отсыпались после встречи Нового...
Большинство ориентированных на туристов городов и поселков имеют большие платные автостоянки в непосредственной близости от исторических...